School of Medical Sciences


Zebrafish development and disease models

Crosier Lab
Crosier Lab Members: (Standing left to right)Tomoya Hasegawa, Pramuk Keerthisinghe, Leslie Sanderson, Lisa Lawrence, Kathy Crosier, Chris Hall, Jonathan Astin, Phil Crosier, (Sitting left to right): Denver Britto, Pauline Misa, Lucia Du, Tiffany Eng

Laboratory Directors


Emeritus Professors


Phil&Kathy Crosier
Emeritus Professors Phil and Kathryn Crosier

Staff


  • Alhad Mahagaonkar (Zebrafish Facility Manager)
  • Elina Ashimbayeva (Senior Research Technician)
  • Denver Britto (Senior Research Technician)
  • Lisa Lawrence (Senior Research Technician)
  • Pauline Misa (Senior Research Technician)

Graduate Students


  • Hannah Darroch
  • Lucia Du
  • Tiffany Eng
  • Pramuk Keerthisinghe
Astin Fish
Lymphatic development in zebrafish embryo Tg(lyve1:DsRed2;kdrl:EGFP). Green-blood vessels; Yellow-veins that express lyve1; Red-lymphatic vessels

Research


Our laboratory works on blood and lymphatic development, with this research being applied in clinical areas of inflammation and cancer. Much of our research uses the zebrafish model system, which offers powerful genetic and imaging approaches to provide insights into biology and disease. For example, using transgenic zebrafish where blood stem cells were marked with a Runx1 promoter-driven reporter, we demonstrated the emergence of these stem cells from the wall of the embryonic aorta. When this reporter system was used in a model of bacterial infection, a new molecular pathway was discovered that connected infection with stem cell commitment to producing emergency granulocytes. We developed a model of RUNX1-ETO leukaemia in the zebrafish and have ongoing collaborations to provide insights into the genetics of leukaemia.

A recent focus of our research is the intersection between inflammation and metabolism; a field known as immunometabolism. Many metabolic disorders have an underlying inflammatory component. For example in obesity, macrophages within adipose tissue release pro-inflammatory molecules. New work in the group has identified a gene encoding an enzyme that enables free fatty acids to be the fuel in the production of mitochondrial reactive oxygen species from activated macrophages. We are applying this knowledge in disease settings.

We provided the first comprehensive atlas of an embryonic lymphatic system and have discovered a new mechanism of lymphatic development. Current research seeks to uncover the guidance cues that drive development of lymphatic networks. We have developed models of lymphatic growth relevant to cancer metastasis and to inflammatory bowel disease.

The biological platforms we have developed in inflammation and lymphatics have been applied in drug discovery. Zebrafish are ideal for this work and we have used a drug repositioning strategy to identify existing drugs with previously unknown anti-inflammatory and anti-lymphatic activities. 

 

Research Works Wonders: Can Fish Help Us Understand Human Disease:

https://www.facebook.com/UniofAkl/posts/277268782382773

Emergence of blood stem cells from the ventral wall of the dorsal aorta during embryogenesis. Endothelial cells are marked red and as blood stem cells develop from these cells, runx1 (which is linked to a green reporter) is turned on and causes the cells to appear yellow.
Migration of neutrophils (marked with DsRed that is driven by the lysozyme promoter) to site of infection (green bacteria) in zebrafish head region. Bacteria ingested by neutrophils appear yellow.

Opportunities for Graduate Students


The laboratory has a strong track record in graduate student supervision, attracting students with excellent academic backgrounds, providing training in cutting-edge areas of biomedical science and assisting students in finding outstanding post-doctoral opportunities around the world.  We welcome enquiries from students interested in studying with us for PhD, Masters and Honours qualifications.

Top

Key Publications


  1. Oliver, V. F., van Bysterveldt, K. A., Cadzow, M., Steger, B., Romano, V., Markie, D., Hewitt, A.W., Mackey, D,A., Willoughby, C.E., Sherwin, T., Crosier, P.S., McGhee, C.N., Vincent, A.L. (2016). A COL17A1 Splice-Altering Mutation Is Prevalent in Inherited Recurrent Corneal Erosions. Ophthalmology 10.1016/j.ophtha.2015.12.008
  2. Hall, C., Crosier, P., & Crosier, K. (2015). Inflammatory cytokines provide both infection-responsive and developmental signals for blood development: Lessons from the zebrafish. Molecular immunology 10.1016/j.molimm.2015.10.020
  3. Koltowska, K., Paterson, S., Bower, N. I., Baillie, G. J., Lagendijk, A. K., Astin, J. W., Chen, H., Francois, M., Crosier, P.S., Taft, R.J., Simons, C., Smith, K.A., Hogan, B.M. (2015). mafba is a downstream transcriptional effector of Vegfc signaling essential for embryonic lymphangiogenesis in zebrafish. Genes & Development, 29 (15), 1618-1630. 10.1101/gad.263210.115
  4. Okuda, K.S., Misa, J.P., Oehlers, S.H., Hall, C.J., Ellet, F., Alasmari, S., Lieschke, G.J., Crosier, K.E., Crosier, P.S., Astin, J.W. (2015). A zebrafish model of inflammatory lymphangiogenesis. Biol Open, 4(10):1270-80. doi: 10.1242/bio.013540
  5. Sanderson, L. E., Chien, A. T., Astin, J. W., Crosier, K. E., Crosier, P. S., & Hall, C. J. (2015). An inducible transgene reports activation of macrophages in live zebrafish larvae. Developmental and Comparative Immunology. doi:10.1016/j.dci.2015.06.013
  6. Chew, T. S., O'Shea, N. R., Sewell, G. W., Oehlers, S. H., Mulvey, C. M., Crosier, P. S.,  Godovac-Zimmermann, J., Bloom, S.L., Smith, A. M,. & Segal, A. W. (2015). Optineurin deficiency contributes to impaired cytokine secretion and neutrophil recruitment in bacteria driven colitis. Disease Models & Mechanisms Jun 4. pii: dmm.020362. [Epub ahead of print]
  7. Nicenboim, J., Malkinson, G., Lupo, T., Asaf, L., Sela, Y., Mayseless, O., Gibbs-Bar, L., Senderovich, N., Hashimshony, T., Shin, M., Jerafi-Vider, A., Avraham-Davidi, I., Krupalnik, V., Hofi, R., Almog, G., Astin, J.W., Golani, O., Ben-Dor, S., Crosier, P.S., Herzog, W., Lawson, N.D., Hanna, J.H., Yanai, I., & Yaniv, K. (2015). Lymphatic vessels arise from specialized angioblasts within a venous niche. Nature, 522(7554), 56-61.
  8. Oehlers, S. H., Cronan, M. R., Scott, N. R., Thomas, M. I., Okuda, K. S., Walton, E. M., Beerman, R. W., Crosier, P. S., & Tobin, D. M. (2015). Interception of host angiogenic signalling limits mycobacterial growth. Nature, 517(7536), 612-615. doi:10.1038/nature13967
  9. Astin, J. W., Jamieson, S. M., Eng, T. C., Flores, M. V., Misa, J. P., Chien, A., Crosier, K. E., & Crosier, P. S. (2014). An in vivo antilymphatic screen in zebrafish identifies novel inhibitors of mammalian lymphangiogenesis and lymphatic-mediated metastasis. Molecular Cancer Therapeutics, 13(10), doi: 10.1016/j.dci.2015.06.013.-2462. doi:10.1158/1535-7163.mct-14-0469-t
  10. Hall, C. J., Wicker, S. M., Chien, A. T., Tromp, A., Lawrence, L. M., Sun, X., Krissansen, G, W., Crosier, K. E., & Crosier, P. S. (2014). Repositioning drugs for inflammatory disease - fishing for new anti-inflammatory agents. Disease Models & Mechanisms, 7(9), 1069-1081. doi:10.1242/dmm.016873
  11. Astin, J. W., Haggerty, M. J., Okuda, K. S., Le Guen, L., Misa, J. P., Tromp, A., Hogan, B. M., Crosier, K. E., & Crosier, P. S. (2014). Vegfd can compensate for loss of Vegfc in zebrafish facial lymphatic sprouting. Development, 141(13), 2680-2690. doi:10.1242/dev.106591
  12. Coxam, B., Sabine, A., Bower, N. I., Smith, K. A., Pichol-Thievend, C., Skoczylas, R., Astin, J. W., Frampton, E., Jaquet, M., Crosier, P. S., Parton, R. G., Harvey, N.L., Petrova, T. V., Schulte-Merker, S., Francois, M., & Hogan, B. M. (2014). Pkd1 regulates lymphatic vascular morphogenesis during development. Cell Reports, 7(3), 623-633. doi:10.1016/j.celrep.2014.03.063
  13. Kartopawiro, J., Bower, N. I., Karnezis, T., Kazenwadel, J., Betterman, K. L., Lesieur, E., Koltowska, K., Astin, J., Crosier, P., Vermeren, S., Achen, M. G., Stacker, S. A., Smith, K. A., Harvey, N. L., François, M., & Hogan, B. M. (2014). Arap3 is dysregulated in a mouse model of hypotrichosis-lymphedema-telangiectasia and regulates lymphatic vascular development. Human Molecular Genetics, 23(5). doi:10.1093/hmg/ddt518
  14. Hall, C. J., Boyle, R. H., Sun, X., Wicker, S. M., Misa, J. P., Krissansen, G. W., Print, C. G., Crosier, K. E., & Crosier, P. S. (2014). Epidermal cells help coordinate leukocyte migration during inflammation through fatty acid-fuelled matrix metalloproteinase production. Nat Communications, 5, 3880. doi:10.1038/ncomms4880
  15. Hall, C. J., Sanderson, L. E., Crosier, K. E., & Crosier, P. S. (2014). Mitochondrial metabolism, reactive oxygen species, and macrophage function-fishing for insights. Journal of Molecular Medicine, 92(11), 1119-1128. doi:10.1007/s00109-014-1186-6
  16. Hall, C. J., Boyle, R. H., Astin, J. W., Flores, M. V., Oehlers, S. H., Sanderson, L. E., Ellet, F., Lieschke, G. J., Crosier, K. E., & Crosier, P. S. (2013). Immunoresponsive gene 1 augments bactericidal activity of macrophage-lineage cells by regulating β-oxidation-dependent mitochondrial ROS production. Cell Metabolism, 18(2), 265-278. doi:10.1016/j.cmet.2013.06.018
  17. Wilson, C. W., Parker, L. H., Hall, C. J., Smyczek, T., Mak, J., Crow, A., Posthuma, G., De Mazière, A., Sagolla, M., Chalouni, C., Vitorino, P., Roose-Girma, M., Warming, S., Klumperman, J., Crosier, P. S., & Ye, W. (2013). RASIP1 regulates vertebrate vascular endothelial junction stability through EPAC1-RAP1 signaling. Blood, 122(22), 3678-3690. doi:10.1182/blood-2013-02-483156
  18. Oehlers, S. H., Flores, M. V., Hall, C. J., Okuda, K. S., Sison, J. O., Crosier, K. E., & Crosier, P. S. (2013). Chemically induced intestinal damage models in zebrafish larvae. Zebrafish, 10(2), 184-193. doi:10.1089/zeb.2012.0824
  19. Hall, C., Crosier, K., & Crosier, P. (2012). Through the looking-glass: Observing HSCs through the lens of infection reveals unexpected insights into HSC function. Cell Cycle, 11(16), 2969-2970. doi:10.4161/cc.21390
  20. Pase, L., Layton, J. E., Wittmann, C., Ellett, F., Nowell, C. J., Reyes-Aldasoro, C. C., Varma, S., Rogers, K. L., Hall. C, J., Keightley, M. C., Crosier, P. S., Grabher,  C., Heath, J. K., Renshaw, S. A., & Lieschke, G. J. (2012). Neutrophil-delivered myeloperoxidase dampens the hydrogen peroxide burst after tissue wounding in zebrafish. Current Biology, 22(19), 1818-1824. doi:10.1016/j.cub.2012.07.060
  21. Yang, C. -T., Cambier, C. J., Davis, J. M., Hall, C. J., Crosier, P. S., & Ramakrishnan, L. (2012). Neutrophils exert protection in the early tuberculous granuloma by oxidative killing of mycobacteria phagocytosed from infected macrophages. Cell Host and Microbe, 12(3), 301-312. doi:10.1016/j.chom.2012.07.009
  22. Okuda, K. S., Astin, J. W., Misa, J. P., Flores, M. V., Crosier, K. E., & Crosier, P. S. (2012). lyve1 expression reveals novel lymphatic vessels and new mechanisms for lymphatic vessel development in zebrafish. Development, 139(13), 2381-2391. doi:10.1242/dev.077701
  23. Oehlers, S. H., Flores, M. V., Hall, C. J., Crosier, K. E., & Crosier, P. S. (2012). Retinoic acid suppresses intestinal mucus production and exacerbates experimental enterocolitis. Disease Models & Mechanisms, 5(4), 457-467. doi:10.1242/dmm.009365
  24. Hall, C. J., Flores, M. V., Oehlers, S. H., Sanderson, L. E., Lam, E. Y., Crosier, K. E., & Crosier, P. S. (2012). Infection-responsive expansion of the hematopoietic stem and progenitor cell compartment in zebrafish is dependent upon inducible nitric oxide. Cell Stem Cell, 10(2), 198-209. doi:10.1016/j.stem.2012.01.007
  25. Akagi, J., Khoshmanesh, K., Evans, B., Hall, C. J., Crosier, K. E., Cooper, J. M., Crosier, P. S., & Wlodkowic, D. (2012). Miniaturized embryo array for automated trapping, immobilization and microperfusion of zebrafish embryos. PLoS One, 7(5), 13 pages. doi:10.1371/journal.pone.0036630
  26. Buchanan, C. M., Shih, J. H., Rewcastle, G. W., Astin, J. W., Flanagan, J. U., Crosier, P. S., & Shepherd, P. R. (2012). DMXAA (Vadimezan, ASA404) is a multi-kinase inhibitor targeting VEGF-R2 in particular. Clinical Science, 122, 449-457. doi:10.1042/CS20110412
  27. Oehlers, S. H., Flores, M. V., Hall, C. J., Swift, S., Crosier, K. E., & Crosier, P. S. (2011). The inflammatory bowel disease (IBD) susceptibility genes NOD1 and NOD2 have conserved anti-bacterial roles in zebrafish. Disease Models & Mechanisms, 4(6), 832-841. doi:10.1242/dmm.006122
  28. Crawford, K. C., Vega Flores, M., Oehlers, S. H., Hall, C. J., Crosier, K. E., & Crosier, P. S. (2011). Zebrafish heat shock protein a4 genes in the intestinal epithelium are up-regulated during inflammation. Genesis, 49(12), 905-911. doi:10.1002/dvg.20767
  29. Oehlers, S. H., Flores, M. V., Chen, T., Hall, C. J., Crosier, K. E., & Crosier, P. S. (2011). Topographical distribution of antimicrobial genes in the zebrafish intestine. Developmental and Comparative Immunology, 35(3), 385-391. doi:10.1016/j.dci.2010.11.008
  30. Rhodes, J. M., Bentley, F. K., Print, C. G., Dorsett, D., Misulovin, Z., Dickinson, E. J., Crosier, K. E., Crosier, P. S., & Horsfield, J. A. (2010). Positive regulation of c-Myc by cohesin is direct, and evolutionarily conserved. Developmental Biology, 344(2), 637-649. doi:10.1016/j.ydbio.2010.05.493
  31. Lam, E. Y. N., Hall, C. J., Crosier, P. S., Crosier, K. E., & Flores, M. V. (2010). Live imaging of Runx1 expression in the dorsal aorta tracks the emergence of blood progenitors from endothelial cells. Blood, 116(6), 909-914. doi:10.1182/blood-2010-01-264382
  32. Flores, M. V., Hall, C. J., Crosier, K. E., & Crosier, P. S. (2010). Visualization of embryonic lymphangiogenesis advances the use of the zebrafish model for research in cancer and lymphatic pathologies. Developmental Dynamics, 239(7), 2128-2135. doi:10.1002/dvdy.22328
  33. Oehlers, S. H., Flores., Okuda., Hall, C. J., Crosier., & Crosier. (2010). A chemical enterocolitis model in zebrafish larvae that is dependent on microbiota and responsive to pharmacological agents. Developmental Dynamics, 240(1), 288-298. doi:10.1002/dvdy.22519
  34. Flores, M. V., Crawford, K. C., Pullin, L. M., Hall, C. J., Crosier, K. E., & Crosier, P. S. (2010). Dual oxidase in the intestinal epithelium of zebrafish larvae has anti-bacterial properties. Biochemical and  Biophysical Research Communications, 400(1), 164-168. doi:10.1016/j.bbrc.2010.08.037
  35. Oehlers, S. H. B., Flores, M. V., Hall, C. J., O'Toole, R., Swift, S., Crosier, K. E., & Crosier, P. S. (2010). Expression of zebrafish cxcl8 (interleukin-8) and its receptors during development and in response to immune stimulation. Developmental and Comparative Immunology, 34(3), 352-359. doi:10.1016/j.dci.2009.11.007
  36. Hall, C., Flores, M. V., Chien, A., Davidson, A., Crosier, K., & Crosier, P. (2009). Transgenic zebrafish reporter lines reveal conserved Toll-like receptor signaling potential in embryonic myeloid leukocytes and adult immune cell lineages. Journal of Leukocyte Biology, 85(5), 751-765. doi:10.1189/jlb.0708405
  37. Lam, E. Y. N., Chau, J. Y. M., Kalev-Zylinska, M. L., Fountaine, T. M., Mead, R. S., Hall, C. J., Crosier, P. S., Crosier, K. E., & Flores, M. V. (2009). Zebrafish runx1 promoter-EGFP transgenics mark discrete sites of definitive blood progenitors. Blood, 113(6), 1241-1249. doi:10.1182/blood-2008-04-149898
  38. Brannon, M. K., Davis, J. M., Mathias, J. R., Hall, C. J., Emerson, J. C., Crosier, P. S., Huttenlocher, A., Ramakrishnan, L., & Moskowitz, S. M. (2009). Pseudomonas aeruginosa Type III secretion system interacts with phagocytes to modulate systemic infection of zebrafish embryos. Cellular Microbiology, 11(5), 755-768. doi:10.1111/j.1462-5822.2009.01288.x
  39. Stoletov, K., Fang, L., Choi, S. -H., Hartvigsen, K., Hansen, L. F., Hall, C., Pattison, J., Juliano, J., Miller, E. R., Almazan, F., Crosier, P., Witztum, J. L., Klemke, R. L.,  & Miller, Y. I. (2009). Vascular lipid accumulation, lipoprotein oxidation, and macrophage lipid uptake in hypercholesterolemic zebrafish. Circulation Research, 104(8), 952-960. doi:10.1161/CIRCRESAHA.108.189803
  40. Liongue, C., Hall, C. J., O'Connell, B. A., Crosier, P., & Ward, A. C. (2009). Zebrafish granulocyte colony-stimulating factor receptor signaling promotes myelopoiesis and myeloid cell migration. Blood, 113(11), 2535-2546. doi:10.1182/blood-2008-07-171967
  41. Flores, M. V. C., Hall, C. J., Davidson, A. J., Singh, P. P., Mahagaonkar, A. A., Zon, L. I., Crosier, K. E., & Crosier, P. S. (2008). Intestinal Differentiation in Zebrafish Requires Cdx1b, a Functional Equivalent of Mammalian Cdx2. Gastroenterology, 135(5), 1665-1675. doi:10.1053/j.gastro.2008.07.024
  42. Hall, C. J., Flores, M. V., Crosier, K. E., & Crosier, P. S. (2008). Live imaging early immune cell ontogeny and function in zebrafish Danio rerio. Journal of Fish Biology, 73(8), 1833-1871. doi:10.1111/j.1095-8649.2008.01980.x
  43. Flores, M. V. C., Lam, E. Y. N., Crosier, K. E., & Crosier, P. S. (2008). Osteogenic transcription factor Runx2 is a maternal determinant of dorsoventral patterning in zebrafish. Nature Cell Biology, 10(3), 346-U80. doi:10.1038/ncb1697
  44. Cvejic, A., Hall, C., Bak-Maier, M., Flores, M. V., Crosier, P., Redd, M. J., & Martin, P. (2008). Analysis of WASp function during the wound inflammatory response - live-imaging studies in zebrafish larvae. Journal of Cell Science, 121(19), 3196-3206. doi:10.1242/jcs.032235
  45. Hall, C., Flores, M. V., Storm, T., Crosier, K., & Crosier, P. (2007). The zebrafish lysozyme C promoter drives myeloid-specific expression in transgenic fish. BMC Developmental Biology, 7, 17 pages. doi:10.1186/1471-213X-7-42
  46. Flores, M. V., Hall, C., Jury, A., Crosier, K., & Crosier, P. (2007). The zebrafish retinoid-related orphan receptor (ror) gene family. Gene Expression Patterns, 7(5), 535-543. doi:10.1016/j.modgep.2007.02.001
  47. Flores, M. V., Lam, E. Y. N., Crosier, P., & Crosier, K. (2006). A hierarchy of Runx transcription factors modulate the onset of chondrogenesis in craniofacial endochondral bones in zebrafish. Developmental Dynamics, 235(11), 3166-3176. doi:10.1002/dvdy.20957
  48. Hall, C., Flores, M. V., Murison, G., Crosier, K., & Crosier, P. (2006). An essential role for zebrafish Fgfr11 during gill cartilage development. Mechanisms of Development, 123(12), 925-940. doi:10.1016/j.mod.2006.08.006
  49. Horsfield, J. A., Anagnostou, S. H., Hu, J. K., Cho, K. H., Geisler, R., Lieschke, G., Crosier, K. E., & Crosier, P. S. (2007). Cohesin-dependent regulation of Runx genes. Development, 134(14), 2639-2649. doi:10.1242/dev.002485
  50. Flores, M. V., Tsang, V. W. K., Hu, W. J., Kalev-Zylinska, M., Postlethwait, J., Crosier, P., Crosier, K., & Fisher, S. (2004). Duplicate zebrafish runx2 orthologues are expressed in developing skeletal elements. Gene Expression Patterns, 4(5), 573-581. doi:10.1016/j.modgep.2004.01.016
  51. Kalev-Zylinska, M. L., Horsfield, J. A., Flores, M. V. C., Postlethwait, J. H., Chau, J. Y. M., Cattin, P. M., Vitas, M. R., Crosier, P. S., & Crosier, K. E. (2003). Runx3 is required for hematopoietic development in zebrafish. Developmental Dynamics, 228(3), 323-336. doi:10.1002/dvdy.10388
  52. Kalev-Zylinska, M. L., Horsfield, J. A., Flores, M. V. C., Postlethwait, J. H., Vitas, M. R., Baas, A. M., Crosier, P. S., & Crosier, K. E. (2002). Runx1 is required for zebrafish blood and vessel development and expression of a human RUNX1-CBF2T1 transgene advances a model for studies of leukemogenesis. Development, 129(8), 2015-2030. http://dev.biologists.org/content/129/8/2015.long

 

Top
dmm_7_9_cover
DMM Cover: Repositioning drugs for inflammatory disease - fishing for new anti-inflammatory agents
mct_13_10_cover_front
MCT Cover: An in vivo antilymphatic screen in zebrafish identifies novel inhibitors of mammalian lymphangiogenesis and lymphatic-mediated metastasis

Zebrafish Facility


We have a newly commissioned zebrafish facility that has recently been installed and replaces the original system built in the 1990s. The Tecniplast system has 7 extended racks operated from two life support systems linked into ~2,200 tanks. Two additional stand alone modules with 100 tanks act as nursery systems.

The facility is supported by an MPI certified Quarantine Room for the importation of zebrafish from overseas.

The facility Manager is Alhad Mahagaonkar and the Academic Director is Phil Crosier. All current users of the Facility form the Zebrafish Users Group within the Faculty of Medical & Health Sciences.

Zf facility 2
Zf Facility 3
Zf Facility 1
Top

Alumni


Name (most recent at top)

Current position

Leslie Sanderson

Postdoctoral Fellow,  Universite Libre de Bruxelles, Gosselies, Belgium

Kazuhide Okuda

Cancer Research Malaysia, Kuala Lumpur, Malaysia http://carif.com.my/ 

Sophie Wicker

Research Technician, Department of Obstetrics & Gynaecology, University of Auckland

Stefan Oehlers

Post doctoral fellow, Tobin Lab, Duke Medical Centre, USA

http://cmb.duke.edu/research/faculty/david-tobin

Michael Haggerty

Content Acquisition Researcher, Springer Healthcare Ltd, Auckland

https://nz.linkedin.com/pub/michael-haggerty/83/77a/1b6

Rachel Boyle  

Research Technician, AUT University, Auckland

Alice Domenichini

Research Associate, School of Biomedical Sciences, Curtin University, Perth, Australia

Maria Vega Flores

Principal, Creston College, University of New South Wales, Sydney, Australia

http://crestoncollege.edu.au/about-us/principal-message/

Enid Lam

Research Officer, Peter MacCallum Cancer Centre, Melbourne, Australia http://www.petermac.org/research/conducting-research/cancer-therapeutics/mark-dawson-cancer-epigenetics-laboratory

Thilo Storm

University of Rostock, Rostock, Germany

Makoto Kamei

Research Officer, South Australian Health & Medical Research Institute

https://www.sahmri.com/our-research/themes/sahmri/theme/our-team/dr-makoto-kamei

Julia Horsfield

Associate Professor, University of Otago

http://www.otago.ac.nz/crg/staff/scientists/otago019560.html

Katie Crawford

Postgraduate student, Psychology, Birbeck College, University of London, United Kingdom

http://www.bbk.ac.uk/psychology/

Scott Mead

Genetic Pathologist, Sonic Genetics and Senior Lecturer, School of Medical Sciences, University of New South Wales, Sydney, Australia

http://www.dhm.com.au/about-us/pathologists/pr-list/scott-mead.aspx

Tim Fountaine

Partner, McKinsey & Company, Sydney

Vicky Tsang

Containment Facilities Senior Technician, University of Auckland

Jackie Chau

Orthopaedic Surgeon, Department of Orthopaedics and Traumatology, Kwong Wah Hospital, Kowloon, Hong Kong

Maria Vitas

Group Services Manager, South Auckland Clinical Campus, University of Auckland

Maggie Kalev-Zylinska

Senior Lecturer, School of Medical Sciences, University of Auckland https://unidirectory.auckland.ac.nz/profile/m-kalev

Chris Hall

Senior Research Fellow, School of Medical Sciences, University of Auckland https://unidirectory.auckland.ac.nz/profile/c-hall

Ross Bland

Senior Scientist, AgResearch, Palmerston North

http://www.agresearch.co.nz/

Teresa Holm

Research Fellow, University of Auckland

https://unidirectory.auckland.ac.nz/profile/t-holm

Alan Davidson

Associate Professor, School of Medical Sciences, University of Auckland https://unidirectory.auckland.ac.nz/profile/a-davidson

Anne Barsdley

Research Analyst, Office of the Prime Minister's Chief Science Advisor, Auckland http://www.pmcsa.org.nz/1912-2/

Jeff Greenwood

Senior Scientist, The New Zealand Institute for Plant & Food Research Ltd, Auckland, New Zealand

http://www.plantandfood.co.nz/

Marta Jansa Perez

IVF Hammersmith, London, UK http://www.ivfhammersmith.com/about-us/meet-the-team

Jenny Young (Walshe)

Research Officer, Queensland Eye Institute, Brisbane, Australia

http://www.qei.org.au/page/research/researchers/jenny-young/           

Louanne Hall

Research Coordinator, South Auckland Clinical Campus, University of Auckland

Heather Rooke

Science Director, International Society for Stem Cell Research (ISSCR), Boston, USA

http://www.isscr.org/home/about-us/isscr-leadership/headquarters-staff

Paula Lewis

Associate Director, In Vivo Pharmacology, RaNA Therapeutics, Boston, USA http://ranarx.com

Top
zebrafish devel 800px