Severe, sight threatening microbial keratitis: aetiology, diagnosis and critical management considerations
Professor Charles NJ McGhee

To be read in conjunction with 2008 lecture

Assessing acute keratitis

Relevant History
- Unilateral or bilateral
- Type of discharge
- Recurrent episodes
- Allergies/atopia
- Current Rx – including OTC
- Recent systemic symptoms
- Previous ocular surgery

Clinical assessment cont’d

- Predisposing factors
- Lid malposition
- Tear film
- Corneal sensation
- Ulcer dimensions
- Hypopyon
- Perforation

Carefully document appearance on presentation and daily thereafter by a plan and profile drawing with annotations and measurements
Consider slit-lamp Microphotography
+/- in vivo confocal microscopy

DIAGNOSIS

Conjunctival swabs little use
Corneal scrape is paramount
Consider PCR
Corneal biopsy
Culture contact lens
Culture contact lens cases

Protect your patient (and yourself) by understanding the evidence-base

Levels of evidence

Evidence constantly updated: 1980’s important bacterial pathogens in microbial keratitis 87% of bacterial keratitis:
- Staphylococcus sp.
- Streptococcus sp.
- Pseudomonas sp.
- Enterobacteriaceae
 - proteus, klebsiella
Differential diagnosis in presumed microbial keratitis

- Bacterial
- Viral
- Chlamydial
- Acanthamoeba
- Fungal
- Non-infective

Predisposition to severe keratitis

- Dry eye
- Contact lens wear
- Blepharitis
- Lid malposition
- Corneal exposure
- Trauma
- Previous surgery
- Neurotrophic cornea

The evidence base:

1. Severe microbial keratitis leading to hospitalization in Western Australia
 - Prior ocular surgery 23*
 - (5* Bullous keratopathy)
 - Contact lens wear 12
 - Lid malposition 9
 - Trauma 8
 - HSV Keratitis 7

2. Aetiology of acute keratitis: prior ocular surgery
 - Infectious keratitis post PRK Risk approximately 1:500 – 1:1000
 - Infective keratitis in 13 eyes/12 subjects
 - Final BSCVA 20/20 – 20/200
 - Bacterial Keratitis: predisposing factors, clinical & microbiological review of 300 cases

 - 90.6% of 300 cases exhibited risk factors:
 - 50% Contact Lens wear
 - 21% Keratopathy
 - 15% Trauma

4. Contact lenses and infective keratitis in the 1990’s:
 - Relative CL risk of bacterial keratitis
 - RGP CL annual risk is 1:10,000
 - Extended wear vs daily SCL 3.9:1
 - Overnight wear SCL x10-15 risk
 - (Acanthamoeba < 1% of keratitis but very strongly associated with contact lenses)
5. Contact-lens-related microbial keratitis & morbidity
 - All ophthalmologists (440) in Netherlands
 - 3 month period in 1996
 - 92 cases of microbial keratitis
 - 17 RGP, 63 DWSL, 12 EWSL
 - Annualized incidence:
 - RGP 1.1 per 10,000
 - DWSL 3.5 per 10,000
 - EWSL 20 per 10,000

6. Severe microbial keratitis in a tertiary referral centre – is history useful?

 88% had predisposing risk factors

<table>
<thead>
<tr>
<th>Risk Factor</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ocular surgery</td>
<td>30%</td>
</tr>
<tr>
<td>Contact lens wear</td>
<td>26%</td>
</tr>
<tr>
<td>Topical corticosteroids</td>
<td>25%</td>
</tr>
<tr>
<td>Ocular trauma</td>
<td>24%</td>
</tr>
<tr>
<td>Prior HSV</td>
<td>11%</td>
</tr>
<tr>
<td>Dry Eye</td>
<td>8%</td>
</tr>
<tr>
<td>Trichiasis/entropion</td>
<td>6%</td>
</tr>
</tbody>
</table>

 National Ophthalmology Centre, Paris
 Organisms identified in 68% of eyes
 - 83% Gram positive
 - 17% Gram Negative
 - 2% Polymicrobial

8. Clinical characteristics of microbial keratitis in Taiwan: 10 yr x-sectional study 476 eyes

 Organisms
 - Pseudomonas sp 37.7%
 - Fungi 13.5%
 - Staphylococci 8.4%
 - Mycobacterium (non-TB) 7.9%
 - Streptococci 7.6%
 - Acanthamoeba 4.4%

9. Clinical and Microbiological profile of infective keratitis in Switzerland

 Risk factors
 - Contact lens wear 36%
 - Blepharitis 21%
 - Trauma 20%
 - Xerophthalmia 15%
 - Keratopathies 8%
 - Eyelid abnormalities 6%
10. Clinical and Microbiological profile of infective keratitis in Switzerland

Organisms
- Staph epidermidis 40%
- Staph aureus 22%
- Strept species 13%
- Pseudomonas sp 9%

Sensitivities (resistance to drug)
- to fluoroquinolones 1-15%
- to aminoglycosides 13-22%
- to cefazolin 37%

11. Case Control Study of Microbial keratitis in Hong-Kong

223 new cases of presumed MK over 18 months
- 26% wore contact lenses
- Overall 35% of scrapes yielded +ve results
 - Pseudomonas sp predominant, 5 acanthamoeba

Annual incidence of Microbial keratitis
- 0.63 per 10,000 population
- 3.40 per 10,000 CLW
- 9.30 per 10,000 EW CLW

Of 90 cultured isolates
- Gram-positive 37 (41%)
 - Staphylococcus Aureus - 9
- Gram-negative 42 (47%)
 - Pseudomonas Aeruginosa - 28
- Fungi 5 (5.4%)
 - Fusarium Species - 3
- Protozoan 6 (6.6%)
 - Acanthamoeba Species - 6

Always be prepared to reconsider the diagnosis in microbial keratitis

The varied manifestations of HSV
- Punctate
- Dendritic
- Disciform
- Endotheliitis
- Stromal
- Geographic/amoeboid
- Metaherpetic/trophic

Herpes Zoster Ophthalmicus
- Ophthalmic division of trigeminal nerve
- Approximately 15% of Herpes Zoster
- Usually in elderly
- Rare under 45 but as young as 2
- Consider immuno-suppression /AIDS if two separate dermatomes involved
HZO: Ocular involvement
- Lid oedema/rash
- Conjunctivitis
- Episcleritis
- Scleritis
- Acute epithelial keratitis
- Nummular keratitis
- Disciform keratitis
- Neurotrophic keratitis
- Anterior uveitis

Adenoviral kerato-conjunctivitis
- Clinical presentation – mild to severe conjunctivitis / keratitis
- Highly contagious!
- Occupational hazard of ophthalmologists & optometrists

Always Consider Global Differences

Epidemiology of suppurative Keratitis
- Multicentre study: Ghana & India 99-01
- 1090 patients recruited
- Organisms
 - Filamentous fungi (42%)
 - Fusarium and Aspergillus
 - Bacterial Organisms
 - Ghana: Pseudomonas
 - India: Streptococi

Consider Global Differences Fungal Keratitis
- E.g. Fusarium Species with B&L ReNu
 - Topical Rx
 - Natamycin
 - Amphotericin
 - Systemic Rx
 - Voriconazole / itraconazole

Centres for Disease Control (CDC) Acanthamoeba update 2007

Typically AK is a rare disease - 1-2 cases/million contact lens PA in USA, based on analysis of cases identified during an outbreak of AK 1985–1987
With estimated 30 million in USA wearing SCL, this would equate to approx 30 to 60 cases of AK per year.

Treatment of bacterial keratitis

Once it was easy! First line antibiotic therapy 1990's
NB only after obtaining microbiology specimens

Fortified duo-therapy
- Cephalosporin e.g. cefuroxime 5.0%
- Aminoglycoside e.g. tobramycin 1.25 - 1.5%

Monotherapy
- Fluoroquinolone e.g. ciprofoxacin/ofloxacin
Is there still a role for fortified duotherapy in 2008?

Cephalosporins – principally for Gram +ve bacteria
Fortified 5% solution for Rx of severe bacterial keratitis as duotherapy Rx
No commercial ocular preparations – unpreserved – made up by hospital pharmacy

Sensitivity 1997-2000
- Staph Aureus 94%
- Staph (coag. neg.) 98%
- Strept. Pneumoniae 94%

Aminoglycosides – principally for Gram –ve bacteria
Tobramycin or gentamicin, as part of fortified duotherapy (1.2-1.5%)
Active against spectrum Gram +ve and –ve bacteria, including pseudomonas

Sensitivity 1997-2000 Tobramycin
- Pseudomonas aer. 94%
- Staph Aureus 83%
- Staph (coag. neg.) 78%
- Strept. Pneumoniae 48%

Fluoroquinolones as monotherapy in severe bacterial keratitis
Ciprofloxacin inately more potent but penetration of Ofloxacin is x4 greater than ciprofloxacin

Cekic O et al, Ophthal Surg 1999
However, all gram positive bacteria equally susceptible to corneal concentrations obtained by ofloxacin & ciprofloxacin

Kowalski RP et al, Cornea 1998
Both drugs excellent against common gram +ve and gram –ve bacteria, less good against strept pneumonia & pseudomonas aeruginosa

Fluoroquinolones: 2nd gen. fluoroquinolones equivalence in MK
Efficacious against Gram positive and Gram negative bacteria, esp. staphylococci,
Less effective against certain streptococci
Variable effectiveness against pseudomonas
Low toxicity and good ocular penetration

Risk of Perforation in keratitis (ofloxacin)
Royal Victorian Eye and Ear Hospital, Melbourne 1991-1999
Retrospective review of 277 cases hospitalized for bacterial keratitis

| Corneal perforation | Fluroquinolone Rx 12.7% (18/142) |
| Fortified AB’s Rx 0.7% (1/135) |

“Fourth” generation fluoroquinolones
- Second generation
 - Ciprofloxacin
 - Ofloxacin
- Third generation
 - Levofloxacin
- Fourth generation
 - Gatifloxacin
 - Moxifloxacin
USA trends in microbial keratitis and fluoroquinolone resistance 1990-00

Bascom Palmer Eye Institute (2920 cultures)
Fluoroquinolone resistance increased 11 to 28%
Aminoglycoside resistance unchanged

Eye & Ear Institute Pittsburgh (1053 isolates)
Gram +ve decreased from 81.8% to 51.4%
Staph Aureus fluoroquinolone resistance increased to ciprofloxacin 5.8% to 51.4%

Antibiotic resistance Fourth Generation fluoroquinolones
For most isolates no susceptibility difference between the **five** fluoroquinolones
The MICs for 4th generation statistically lower for gram positive bacteria
Fourth generation show greater susceptibility of Staph aureus resistant to 2nd and 3rd
However, Ciprofloxacin demonstrated lowest MICs for gram negative bacteria

Fourth generation fluoroquinolones: mechanism of action
- Bactericidal
- Inhibit two enzymes involved in Bacterial DNA Synthesis
- DNA Gyrase (topoisomerase I)
- Topoisomerase IV

Antibiotic resistance to fourth generation fluoroquinolones?
Alteration in target enzymes:
- DNA Gyrase & Topoisomerase IV
Alteration in access to target:
- Expression of membrane efflux pumps

Resistance to 4th gen. fluoroquinolones
2 cases of keratitis post PRK/LASIK
6% of 100 isolates of Ps. aeruginosaa

Efficacy of moxifloxacin in the treatment of bacterial keratitis: a randomised controlled trial, Melbourne, Australia
229 patients – 83% culture positive
Randomised to:
- fortified tobramycin & cephazolin
- Or ofloxacin
- Or moxifloxacin
No statistical difference in groups in relation to time to cure, healing rate, or complications

Duo therapy or monotherapy ?

<table>
<thead>
<tr>
<th>Monotherapy</th>
<th>Duotherapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small lesions</td>
<td>Large lesions</td>
</tr>
<tr>
<td>Peripheral lesions</td>
<td>Central Lesions</td>
</tr>
<tr>
<td>Previous Duotherapy</td>
<td>Previous FluorQ</td>
</tr>
<tr>
<td>Culture sensitivity</td>
<td>Culture sensitivity</td>
</tr>
<tr>
<td>Limited Compliance</td>
<td>Suspected</td>
</tr>
<tr>
<td>Patient cost</td>
<td>Pseudomonas**</td>
</tr>
</tbody>
</table>
Second line antibiotic therapy
Modify antibiotic regime based only upon cultures and sensitivities

Treat aggressively

Outcome & morbidity of severe keratitis in Western Australian tertiary centre
Severe microbial keratitis (N=53)
70% < 20/200 on admission
39% < 20/200 latest review

Management of severe microbial keratitis in NZ tertiary referral centre (Auckland)
Severe end of MK spectrum
49% central, 20% paracentral,
40% of eyes <20/200
Median lesion 2.4mm

Pathogens identified in 75% of 1st and 50% 2nd scrapes
with 33% being polymicrobial
Staphylococcus – coagulase negative
Propionibacterium acnes
Staphylococcus epidermidis
Streptococcus pneumoniae
Staphylococcus aureus
Pseudomonas aeruginosa

Management of severe microbial keratitis in NZ tertiary referral centre
NB: 33% polymicrobial
62% Rx fortified Kefzol & tobramycin
31% Rx ciprofloxacin
Mean hospital stay 5.2 days (1-31 days)
Median final BCVA 20/40, however, 33.8% had 20/100 or poorer vision at discharge

Brief Summary - Antibacterial Rx severe keratitis (RED FLAG)
1. Always attempt to identify organism by a corneal scrape and culture
2. Make a decision duo or mono Rx
 Site, severity, susceptibility, compliance
3. Minimise resistance
 High frequency no tapering of fluoroquinolones
4. Definitive management
 Always consider scrape/re-scrape to identify organisms
5. As a rule you should never use corticosteroids in infective keratitis
Acanthamoeba - a plague on both our houses

Acanthamoeba is a protozoan that causes a rare but devastating corneal infection. 1973 first reported in keratitis. 1980’s profile raised with public and eye care professions, since contact lens related “epidemic” of acanthamoeba keratitis.

Acanthamoeba is free-living amoeba
Relatively common in the environment. Has been isolated from water including: natural & treated water in pools/hot tubs, drinking water systems - shower heads, taps, sewage systems, soil air in association with cooling towers, heating, ventilation and air conditioner systems.

Opportunistic bacteria & fungal hunters
Most people will be exposed to Acanthamoeba during their lifetime. Generally will not get sick as most species are bacteriovores. Some are opportunists that can cause infections in humans & animals.

Acanthamoeba: incidence, outcome and risk factors: England/Wales 97-99
106 cases, 88% CL wearers
1.1 & 1.3 / million adult population
17.5 & 21.4 / million CL wearers
CL wearers: south vs north – x 9 risk
Hard vs soft domestic H2O - x 3 risk

Diverse presentation of acanthamoeba keratitis

Common symptoms include:
- Redness
- Watering
- Disproportionate pain
- Severe photophobia
- Foreign body sensation
- Decreased visual acuity

Common signs include:
- Punctate staining
- Epithelial defects
- Stromal infiltrates
- Ring infiltrate
 radial keratoneuritis
- Decreased sensation

Clinical Presentation - Have a high index of suspicion
Careful history should raise suspicion
Often a delay in making diagnosis, frequently mistaken for HSV keratitis
Treatment aggressive & extensive – therefore must achieve microbiological diagnosis prior to Rx

Reduced time to diagnosis
Time to diagnosis 1985 - mean 180 days 1992 - mean 9.3 days
70-75% misdiagnosed HSV
Establishing the diagnosis 2
Diagnosis - culture and via polymerase chain reaction (PCR) of corneal scrapings
Useful to culture contact lenses/cases
*in vivo confocal microscopy has been utilized to detect the amoeba or *acanthamoeba* cysts

Treatment of *acanthamoeba* Successful treatment requires
- Early diagnosis
- Aggressive medical & surgical therapies
- Medical treatment with topical antimicrobial agents
- As cyst form may be highly resistant a combination of drugs used
- Therapeutic agents
- Combination therapy incorporating 2 of the 3 following topical agents:
 - Chlorhexidine
 - *Propamidine Isethionate* [Brolene]
 - *Polyhexamethylene biguanide* [PHMB]

Prognosis
Acanthamoeba keratitis has a good outcome if detected and treated early
Late diagnosis has poor prognosis for vision & disastrous outcomes including:
- Ongoing infection,
- Permanently reduced vision
- Need for corneal transplantation.

Centres for Disease Control (CDC) *Acanthamoeba* update 2007
08/01/07 recall of AMO solution product
COMPLETE MoisturePLUS Multi-purpose Contact Lens Solution
Of 102 people with AK included in the preliminary analysis of June 2007

Corticosteroids & microbial keratitis

1. May mask presentation & delay appropriate management of severe keratitis, particularly *acanthamoeba*

2. Topical steroids shown to be a significant risk factor in severe keratitis requiring hospitalization

The evidence-based literature on corticosteroids & microbial keratitis

Experimental models suggest possible advantages

However, clinical studies show no significant effect!

Prior use of corticosteroids predisposes:
- Eyes with corneal disease to MK Odds Ratio 2.63
- Eyes with MK to treatment failure Odds Ratio 3.75
Using steroids wisely (and extremely rarely) – red flag

As a general rule steroids should be avoided in microbial keratitis
Be certain of diagnosis – do not simply use because no response to Rx
Always consider re-scratch
Identify drug sensitivities
Only consider if infective agent identified and specificity of Rx confirmed and in conjunction with an ophthalmologist
Observe 3-4 days of definite response to anti-microbials
Introduce as weak potency limited regimen - watch for corneal thinning

Poor prognostic features of microbial keratitis

- Severe dry eye
- Neurotrophic cornea
- Central or paracentral location
- 3mm or greater diameter ulcer
- Fungal ulcer
- Prior use of steroids
- Late referral

Surgical interventions in severe microbial keratitis

- Remove involved sutures
- Diagnostic biopsy
- Lid surgery
- Punctal occlusion
- Penetrating keratoplasty
- Evisceration/enucleation

Prevention of severe microbial keratitis

- Appropriate contact lens care
- Avoidance of steroid misuse
- Management of epithelial trauma
- Patient education post surgery
- Routine corneal suture removal
- Intensive attempts to isolate organism
- Intensive early anti-microbial therapy