CORNEAL COLLAGEN CROSS-LINKING - CLINICAL OUTCOMES AND THE EVOLUTION OF FIVE YEARS OF PUBLIC SERVICE IN AUCKLAND

Ocular Therapeutics Conference 2020
Akilesh Gokul, PhD, Bptom (Hons) TPA
Post-Doctoral Clinical Research Fellow
Department of Ophthalmology
University of Auckland
No Financial Disclosures

KERATOCONUS VS. NORMAL

© Dr Hans Vellara, Department of Ophthalmology, University of Auckland

- Deformation amplitude higher in keratoconus

KERATOCONUS

Simulation of what someone with keratoconus perceives

Basic treatment algorithm as disease progresses:
spectacles ↔ contact lenses ↔ transplantation

2009-2012

- Dr Charlotte Jordan’s PhD
- Randomised control trial
- Traditional CXL protocol
- 39 patients
 - Traditional CXL safe and effective

TRADITIONAL CORNEAL CROSS-LINKING

Stroma soaked in riboflavin (vitamin B2) for 30 minutes
Exposure to continuous/uninterrupted ultraviolet light of 3mW/cm² for 30 minutes = total energy of 5.4 J/cm²
Corneal collagen cross-linking

2014-2016

- Dr Akilesh Gokul’s PhD
- High intensity, high energy, continuous vs. pulsed UV-A CXL
- High energy accelerated col
- Randomised intervention study
- 80 eyes with 2 year follow-up
 - 40 eyes/group

CORNEAL CROSS-LINKING
HIGH-INTENSITY (ACCELERATED), HIGH-ENERGY
- CONTINUOUS

Stroma soaked in modified riboflavin (vitamin B2) for 10 minutes
(30 minutes in traditional protocol)
Expose to continuous/uninterrupted ultraviolet light of 30 mW/cm² for
4 minutes = total energy of 7.2 J/cm²
(vs. 3 mW/cm² for 30 minutes = 5.4 J/cm²)

WHY CONTINUOUS VS. PULSED?

- Cross-linking: UV-A + Riboflavin = Reactive Oxygen (O₂) Species
 - Reactive O₂ species = covalent bonds
- Type I and II photodynamic reaction
 - Type II more efficient but oxygen dependent
- O₂ in cornea depleted rapidly on UV-A initiation
 - 30mW/cm² zero in 1s, 3 mW/cm² takes 15s
- O₂ concentration rapidly increases once UV-A stopped
 - Theoretically pulsing UV-A = Type II reaction = covalent bonds

SUMMARY OF KEY RESULTS

- At 24 months follow-up compared to baseline:
 - No significant difference in UVA, K_max, and CTP in both p-ACXL
 and c-ACXL
 - CDVA improved significantly in both p-ACXL and c-ACXL
 - MRSE improved significantly and K_max decreased significantly
 in the c-ACXL group only
 - No complications encountered in either group

CONCLUSION

- Both pulsed-ACXL and continuous-ACXL safe and effective at
 halting the progression of keratoconus at 24 month follow-up
- Continuous-ACXL may offer superior refractive and tomographic
 outcomes but may not translate into better visual outcomes
- Continuous possibly the superior method due to shorter
 procedure time i.e. more efficient – 5 pulsed = 6 continuous
2016-2020

- ADHB service
- Continuous UV-A Accelerated CXL
 - Different protocol to Dr Jordan’s and Dr Gokul’s PhDs
 - 10 minute riboflavin soak
 - 3 minute continuous UV-A exposure
 - 30mW/cm² for 3 minutes = total energy of 5.4 J/cm²
 - High intensity, traditional energy
- Weekly list
 - ~160 procedures per year

POST-OP CARE

- Bandage CL placed
- Ciloxan QID for 1 week, Fluoromethalone QID for 1 month
- Review 3 days post
 - Remove bandage CL – most epithelial defects almost fully healed
- Review 6 weeks, 3 months, 6 months and 1 year post-op
 - Then on case-by-case basis -> 3-12 monthly
- Encouraged to see optometrist for spectacle and/or CL review after 3 month post-op visit

WHO IS UNDERGOING CXL?

- Total number procedures = 573 eyes of 426 patients
 - 500 epi-off
 - 73 transepithelial
 - 2014-2016 = 53 (72.6%)
 - 2017-2020 = 20 (27.4%)
- Gender
 - Male 59%
 - Female 41%

WHO IS UNDERGOING CXL?

Mean age on the day of CXL - 22.41 ± 6.75 years (range 7-48)

- 20-30 years old 40%
- <20 years old 31%
- 20-30 years old 25%

WHO IS UNDERGOING CXL?

Auckland Region*

- European 49%
- Asian 26%
- Māori 10%
- Pacific Peoples 14%

CXL - ADHB

- European 22%
- Pacific Peoples 32%
- Māori 30%
- African 10%
- Middle Eastern 3%
CRITERIA FOR PROGRESSION

- At least 6 months of visual/refractive/tomographic data available
- Progression defined as ≥one of:
 - Increase in maximal keratometry of ≥0.75D
 - Change in refractive astigmatism of ≥0.75D
 - Decrease in thinnest corneal thickness of ≥15μm
 - Progression measured indirectly by using rigid contact lenses; a change of >0.2mm in base curve
 - Loss of 2 or more lines of best spectacle corrected visual acuity
 - Clinician judgement

SAFETY LIMITATIONS

- Corneal thickness
 - Thinnest point >400 μm
- Corneal clarity
 - No significant corneal scarring -> from KC or otherwise
- Inflammatory disease under control -> non-healing epithelial defects
 - E.g. allergic eye disease (VKC, AKC, SAC)
 - No limitation on keratometry values
 - As long as above criteria are met

CLINICAL OUTCOMES SINCE 2014

- 5 (1%) infections
 - All admitted for fortified topical antibiotics
 - No loss of BCVA
- 8 (1.4%) repeat CXL procedures
 - 3 initially had transepithelial CXL
- Zero eyes that have had epi-off CXL progressed to transplant
 - 1 patient that had transepithelial CXL progressed to hydrops
- Many patients change in spec and CL Rx

SO WHAT ARE THE RISKS?

- 0.5-1% infection risk
- ~1% failure – require repeat procedure (if possible)
- Possible spectacle or CL Rx will change
 - Even without complication
 - Advised to not update for at least 3 months post-op
 - Unaided vision can change even without complication
 - Depending on what happens to spec/CL Rx

SUMMARY

- CXL has evolved substantially over the last decade in Auckland
 - Current protocol is accelerated CXL with continuous UV-A
 - Procedure routinely carried out
 - Weekly list
 - Main risk is infection (0.5-1%)
 - Early disease detection remains a challenge
 - Mostly individuals aged 20-30 (~50%) undergoing CXL
 - Very large ethnic bias
 - 30% Māori
 - 32% Pacific Peoples
 - 22% European

ACKNOWLEDGEMENTS

- Prof Charles McGhee
- Prof Dipika Patel
- Dr Mohammed Ziaei
- Dr Hans Vellara
- Dr Jay Meyer
- Dr Stuti Misra

- University of Auckland Doctoral Scholarship
- NZAO Post-Graduate Scholarship
- NZAO Post-Doctoral Fellowship