LAB 8: ENZYMES AS DRUG TARGETS.

Objectives

- > To review an appreciation of enzyme structure and function
- > To categorise and define the major types of enzyme inhibitors
- > To develop an understanding of the consequences of inhibition of enzymes by drugs

Open the *Enzymes as Drug Targets* link, and click on the intro page to commence. Click on the protein icon to enter the tutorial. Make notes as necessary according to the guide below.

protein icon to enter the tutorial. Make notes as necessary according to the guide below
1/ Enzymes as catalysts.
Degradation
December
Rearrangement
Synthesis
2/ Location of enzymes
Acetylcholine esterase
Alcohol dehydrogenase
Mixed function oxidase
Pepsin
DNA polymerase
Pyruvate dehydrogenase
3/ Structure of enzymes.
(A) Primary structure
Secondary structure
Tertiary structure
Quaternary structure
(B) Activity centre

4/ Catalysis and activation energy (A) What happens to the enzyme and substrate following binding?
Draw the graph showing lowering difference in activation energy for non-enzyme and enzyme-catalysed reactions
(B) Give an example of stereoselectivity with respect to enzyme catalysis:
5/ Acceleration of equilibrium
(A) Enzymes and equilibrium – turnover number
What is the turnover number per active site of acetylcholine esterase?
(B) Enzyme kinetics (draw the graph and label it)
BACKGROUND: A number of very important drugs act by inhibiting enzymes. Drugs vary how they achieve enzyme inhibition. The rate of an enzyme reaction (V) varies with substrate (S) concentration. Increasing S increased V until Vmax is reached. K_m , concentration of substrate is the concentration at which reaction rate is half maximal., represents a measure of how tightly the substrate is bound. i.e. the affinity of the substrate for the enzyme. A large K_m represents low affinity/low binding and vice versa.

Vmax =
Km =

(C) Lineweaver Burke plot (draw graph)	
I/Vmax =	
-1/Km =	
6/ Isoenzymes	
(A) An example of an enzyme isoform:	
(B) Ignore	
7/ Enzyme inhibitors A) Compositive reversible inhibitors	
A) Competitive reversible inhibitors	
Example. ACE inhibitor	
	Match the following drug with their target enzyme.
allopurinol	xanthine oxidase
edrophronium	monoamine oxidase
ibuprofen	bacterial dihydrofolate reductase
moclobemide	cyclooxygenase
trimethoprim	acetylcholinesterase
D) Enzyme kinetics	
The Lineweaver Burk plot (draw)	

V =	
S =	
What is the effect of a compe	etitive reversible inhibitor on
V_{max}	increase, decrease, or no change?
K_{m}	increase, decrease, or no change?
B/ Competitive irreversible inhil	bitors
Come to equilibrium – time deper	ndent
Two groups: Active site inhibitor	rs (covalent binding)
Mechanism-based	irreversible inhibitors (suicide substrates)
9/ Active site inhibitors	
A) Example (drug and en	zyme substrate)
B) COX actions	
C) Further examples (ma	tch):
Dyflos	acetylcholinesterase
Benzylpenicillin	DNA polymerase (viral)
	glycopeptide transpeptidase
Acyclovir	Dihydrofolate reductase (human)

	What effect do no	on-competitive reversible inhibitors have on
	V_{max}	Increase, decrease, or no change?
	K_{m}	Increase, decrease, or no change?
10/ Me	echanism-based	suicide inhibitors
	(A) Examples	
	Mechanism of ac	etion?
	(B) Clavulanic ad	pid
11/ No	n-competitive re	versible inhibitors (a.k.a. allosteric inhibitors)
A)	Example	
B)	Eicosanoid synth	nesis and actions
C)	Lineweaver Burk	plot (draw)
		on-competitive reversible inhibitors have on
	V_{max}	Increase, decrease, or no change?
	K _m	Increase, decrease, or no change?
	D) Allosteric acti	ivators
	A few drugs work	k by enhancing enzyme activity. These are called allosteric activators
	Example	
	Mechanism of ac	tion?

(A) Inhibition of an enzyme could prevent:
A fall in substrate concentration? (see B)
A rise in substrate concentration?
A fall in concentration of products?
A rise in concentration of products? (see C)
B) Neostigmine
Mechanism of action?
C) Thromboxane A ₂ (TXA ₂)
Actions in the vasculature?
Aspirin. Mechanism of action?
13/ Duration of action
Reversible, e.g. captopril
Irreversible, e.g. aspirin
RETURN TO MAIN MENU AND DO THE MCQ TEST TO CHECK YOUR NOTES AND KNOWLEDGE
EXIT PROGRAMME

12/ Consequences of enzyme inhibition