

Jacqueline Ross, jacqui.ross@auckland.ac.nz

MICROSCOPY NEW ZEALAND INC. CONFERENCE WORKSHOP 2017

Measuring area and intensity of fluorescent objects with Fiji 31 January 2017

MEDICAL AND

SCHOOL OF MEDICAL SCIENCES

TH SCIENCES

Example 1

- 1. Open the images called Treated SiHa DAPI.tif and Treated SiHa gH2AX-1.tif.
- 2. The image of the nuclei will be used to create a mask for the green image.
- 3. Calibrate the images using the **20x** image of the micrometer slide.

4. Create grayscale versions of both images (*Image – Color –Split channels*). Discard the other channels.

5. Select the **DAPI Blue** image and go to **Process – Enhance Contrast**;

6. Try out the settings until the nuclei look well defined but not oversaturated or too joined together.

7. Go to Image - Adjust Threshold and choose a method that selects the nuclei well;

🗊 Treated SiHa DAPI.tif (blue) (G) (33.3%)	🗾 Threshold	
626.09x469.57 μm (1280x960); 8-bit; 1.2MB		
	21.54 %	
	1 59	
	4 255	
	· · · · · · · · · · · · · · · · · · ·	A2285-
	Intermodes 💌 Red 💌	1990
	🔽 Dark background 🦳 Stack histogram	
	Auto Apply Reset Set	48
	100000	

8. Click **Apply** to make the nuclei image binary.

9. We need to remove some small objects that aren't attached to the nuclei. Go to Process – Binary Options and try out the different operators and options. Make sure that Black background is selected. You need one that smooths the outlines a bit and removes small particles but doesn't take away or add too much. Click OK when you are satisfied with the results.

🗊 Binary Options 🛛 🕅	
Iterations (1-100): 3 Count (1-8): 3	
Black background Pad edges when eroding	
EDM output: Overwrite 💌	
Do: Open 💌	
Preview	
OK Cancel Help	

10. Several of the nuclei are joined together so we need to use the **Watershed** operation to separate them.

11. Go to Process - Binary - Watershed to separate the joined nuclei;

12. Go to **Analyze – Set Measurements** to select the parameters you want to measure. Make sure that you select all of the gray value parameters as well as **Limit to Threshold** and **Display Label**. Select the **Green** image in the **Redirect to**: drop-down box and click **OK**.

🕎 Set Measurements	X
🔽 Area	🔽 Mean gray value
Standard deviation	Modal gray value
🗹 Min & max gray value	Centroid
Center of mass	Perimeter
Bounding rectangle	🗖 Fit ellipse
Shape descriptors	Feret's diameter
Integrated density	🔽 Median
Skewness	🗆 Kurtosis
Area fraction	Stack position
Limit to threshold	Display label
Invert Y coordinates	Scientific notation
Add to overlay	
Redirect to:	Treated SiHa gH2AX-1.tif (green) 🔻
Decimal places (0-9):	3
	OK Cancel Help

13. Make sure that you have a threshold set for the images (Image - Adjust - Threshold);

14. Go to **Analyze – Analyze Particles** and select the options you need. You can set a minimum size so that you don't include small objects/debris. You should also **Exclude on edges** in this case.

🗊 Analyze Particles 🛛 🔀
Size (µm^2): 100-Infinity
Pixel units
Circularity: 0.00-1.00
Show: Overlay
✓ Display results ✓ Exclude on edges
🗆 Clear results 👘 Include holes
Summarize Record starts
🗹 Add to Manager 🛛 🗖 In situ Show
OK Cancel Help

15. If you want to save the **Overlays** as **Regions of Interest** – load them into the **ROI Manager;** (Image – **Overlay – To ROI Manager**). Then go to **More – Save** to save the ROI set.

🗊 ROI Manager (
0000-0282	Add [t]
0001-0301	Update
0002-0421	Delete
0003-0505	Rename
0005-0680	Measure
0006-0693	Deselect
0007-0700	Branartian
	Froperites
	Flatten [F]
	More »
	Show All
	🚽 🗹 Labels

16. If you show the overlay/ROIs on the images (**Show All**) and then save them as TIFF, then the overlay will be saved with the images but not drawn into it. The **Results** and **Summary** files can be saved and opened in Excel or any other software that supports tab-delimited or comma-separated text for further analysis.

Example 2

- 1. Open the data set called Granzyme B.Ism and split it into the 3 components (green, red and gray).
- 2. Measure the diameter of the cells on the "green" image by using the **Line tool** (the value is displayed in the **Status bar).** This image will be used for the initial segmentation.

3. Go to **Image-Adjust – Auto Local Threshold** – enter a value for the **Radius** based on your measurement of the cell diameter, e.g. 5 and select **Try all** for the **Method** to see which one will work best.

💷 Auto Local Threshold	X	
Auto Local Threshold v1.16. Method Try all	1	
Radius 5		
Special paramters (if differe Parameter 1 0 Parameter 2 0	ent from default)	
White objects on black ba	ackground	
Thresholded result is alway	rs shown in white [255].	
	OK Cancel	
Montage (12.5%)		
	۲۵٬۵۵ ۵۰ ۵۰۵٬۰ ۵۰۵٬۰ ۵۰۵٬۰ ۵۰۵٬۰ ۵۰۵٬۰ ۵۰۵٬۰	
	●ng ●ng	

4. Choose the first method = **Bernsen** as it seems the best and run that particular threshold.

5. Convert the image to binary by going to **Process – Make Binary**;

6. Now go to **Process – Binary – Binary Options** and try out the options from the drop-down box varying the number of **Iterations** and **Count values**. The aim is to close and fill the circles.

😈 Binary Options 💽	
Iterations (1-100): 15 Count (1-8): 3	
Black background Pad edges when eroding	
EDM output: Overwrite 💌	
Do: Nothing 💌	
Preview Nothing Erode Dilate	
OK COpen Close	
Contline Fill Holes	

7. The values below work well;

8. Use the following options to create the ROIs for the measurements;

💵 Set Measurements	X
🔽 Area	🥅 Mean gray value
Standard deviation	🥅 Modal gray value
🥅 Min & max gray value	Centroid
Center of mass	Perimeter
🔲 Bounding rectangle	🗖 Fit ellipse
Shape descriptors	Feret's diameter
Integrated density	🥅 Median
Skewness	🗌 Kurtosis
Area fraction	Stack position
Limit to threshold	🗖 Display label
🔲 Invert Y coordinates	Scientific notation
Add to overlay	NaN empty cells
Redirect to:	None
Decimal places (0-9):	3
	OK Cancel Help

9. Then go to **Analyze – Analyze Particles**. Limiting the analysis to objects that are close to being circular helps to avoid measuring abnormal cells (0.8-1.0).

III Analyze Particles
Size (µm^2): 10-Infinity
Pixel units
Circularity: 0.80-1.00
Show: Overlay
Display results 🔽 Exclude on edges
Clear results 🗌 Include holes
Summarize Record starts
🔽 Add to Manager 🛛 In situ Show
OK Cancel Help

10. Select the "red" image. Select **Show All** in the ROI Manager to display the outlines. Then go to **Analyze – Set Measurements** and select all of the grayscale value parameters (intensity).

11. Click Measure in the ROI Manager.

🗾 Results Font Results File Edit Area Mean Mode Min Мах Median Label 25.221 30.125 C3-Granzyme B.Ism:0064-0048 27.519 37.331 C3-Granzyme B.Ism:0065-0059 C3-Granzyme B.Ism:0066-0110 28.823 42.953 27.219 C3-Granzyme B.Ism:0067-0150 38.359 C3-Granzyme B.Ism:0068-0170 26.926 41.125 25.040 38.758 C3-Granzyme B.Ism:0069-0259 27.564 46.437 C3-Granzyme B.Ism:0070-0343 24.967 33.337 C3-Granzyme B.Ism:0071-0379 C3-Granzyme B.Ism:0072-0416 31.132 33.896 27.360 42.201 C3-Granzyme B.Ism:0073-0439 C3-Granzyme B.Ism:0074-0506 24.871 38.701 C3-Granzyme B.Ism:0075-0549 25.339 33.807 C3-Granzyme B.Ism:0076-0590 28.461 42.569 C3-Granzyme B.Ism:0077-0601 29.195 40.804 27.214 29.527 C3-Granzyme B.Ism:0078-0848 26.322 37.157 C3-Granzyme B.Ism:0079-0871 23.645 32.259 C3-Granzyme B.Ism:0080-1007 25.526 40.460 C3-Granzyme B.Ism:0081-1111 C3-Granzyme B.Ism:0082-1210 29.800 39.348 28.501 31.640 C3-Granzyme B.Ism:0083-1215 C3-Granzyme B.Ism:0084-1235 26.028 60.479 C3-Granzyme B.Ism:0085-1249 25.881 34.109 C3-Granzyme B.Ism:0086-1270 28.185 32.630 C3-Granzyme B.Ism:0087-1324 23.916 37.960 C3-Granzyme B.Ism:0088-1374 25.091 24.410 27.242 37.887 C3-Granzyme B.Ism:0089-1447 20.292 47.812 C3-Granzyme B.Ism:0090-1469 C3-Granzyme B.Ism:0091-1480 31.076 58.957 C3-Granzyme B.Ism:0092-1484 28.845 30.389 27.089 35.599 C3-Granzyme B.Ism:0093-1527 C3-Granzyme B.Ism:0094-1592 25.226 40.749